Computer Programming (a)

E1123
Fall 2022-2023

Lecture 7

Functions

INSTRUCTOR
DR / AYMAN SOLIMAN

"> Contents

Y
2)
3)
4)
5)
6)
7)

Introduction

Why functions are useful

Predefined Functions
user-defined Functions
Function Call

Functions Scope Variables

Forward declarations and definitions

» Introduction

In this Lecture, vou will:

» Learn about standard (predefined) functions and discover how to use them in
a program

> Learn about user-defined functions

» Examine value-returning functions, including actual and formal parameters

» Explore how to construct and use a value-returning, user-defined function in
a program

» Why functions are useful

» Organization =2 As programs grow in complexity, having all the code live inside
the main() function becomes increasingly complicated. A function 1s almost like a
mini-program that we can write separately from the main program, without
having to think about the rest of the program while we write 1t. This allows us to
reduce a complicated program into smaller, more manageable chunks, which
reduces the overall complexity of our program.

» Reusability = Once a function is written, it can be called multiple times from
within the program. This avoids duplicated code (“Don’t Repeat Yourself”) and
minimizes the probability of copy/paste errors. Functions can also be shared with
other programs, reducing the amount of code that must be written from scratch
(and retested) each time.

» Why functions are useful

» Testing = Because functions reduce code redundancy, there’s less code to test in
the first place. Also, because functions are self-contained, once we’ve tested a
function to ensure 1t works, we don’t need to test it again unless we change 1it.

» Extensibility = When we need to extend our program to handle a case it didn’t
handle before; functions allow us to make the change in one place and have that
change take effect every time the function 1s called.

» Abstraction > In order to use a function, you only need to know its name, inputs,
outputs, and where it lives. You don’t need to know how 1t works, or what other
code 1t’s dependent upon to use 1t. This lowers the amount of knowledge required
to use other people’s code (including everything in the standard library).

l Functions

l predefined l user-defined

> Ex

» In algebra, a function is defined as a rule or correspondence between values,
called the function’s arguments, and the unique value of the function associated
with the arguments

> Iff(x)=2x + 5, then f(1)= 7, f(2)=9, and f(3) = 11

> 1, 2, and 3 are arguments

» 7,9, and 11 are the corresponding values

» Predefined Functions
Some of the predefined mathematical functions are:

pout. —

Y Returns the absolute value
pOW (X’ y) CaICL”ateS % abs (x) <osLclin> of its argument: abs(=7) =7 e L
pow (2, 3) = 8.0
Returns the smallest whole
Returns a value of type double ceil (x) <cmath> number that is not less than double

x and y are the parameters (or arguments) x: ceil(56.34) = 57.0

The function has two parameters Returns the cosine of angle double

cos (x) x: cos(0.0) = 1.0 (radians)

sgrt (x) calculates the nonnegative
square root of x, for x >= 0.0 At exp(1.0) = 2.71828 doubte

Sqrt (2 y 25) Is1.5 Returns the absolute value
fabs (x) <cmath> of its argument: double

Type double fabs (-5.67) =5.67

Returns e, wheree = 2,718:

» Predefined Functions

#include <iostream>
#include <cmath> // for sqrt and pow
using namespace std;

int main()

{
double number, squareRoot;
cout << "Enter a number: ";
cin >> number;
// sqrt() is a Library function to calculate square root
squareRoot = sqrt(number);
double power=pow(number,3);
cout << "Square root of " << number << " " << squareRoot;
cout << endl; N . Enter a number: 2.5
cout << number << 3= << power; Square root of 2.5 1.58114
return ©; 2.5 ~ 3 = 15.625

s#include <iostream>
T “#include <cmath>
#include <cctype>
##include <cstdlib>

» Predefined Functions

using namespace std;

int main()

{
int ®;
double u, v;

cout << "Line 1l: Uppercase a is "
<< static cast<char> (toupper('a'))
<< endl; //Line

u = 4.2; / /Line
v = 3.0; / /Line
cout << "Line 4: " << u << " to the power of "

<< v << " = " << pow(u, v) << endl; //Line

cout << "Line 5: 5.0 to the power of 4 = "
<< pow(5.0, 4) << endl; //Line

Line 1: Uppercase a is A u =u + pow(3.0, 3); //Line
Line 4: 4.2 to the power of 3 = 74,088 cout << "Line 7: u = " << u << endl; //Line
L%ne 5: 5.0 to the power of 4 = 625 x = -15; //Line
Line 7: u = 31.2 cout << "Line 9: Absolute value of " << x

i 9:

Absolute wvalue of -15 = 15 << " = " << abs(x) << endl; //Line

return 0;

»user-defined Functions

Syntax:

functionType functionName (formal parameter list)
{

}

statements

functionType is also called the data type or return type

» Function Call

‘ functionName (actual parameter list)

» Return Statement

Once a value-returning function computes the value, the function returns this value
via the return statement

It passes this value outside the function via the return statement
The return statement has the following syntax:

In C++, return 18 a reserved word

When a return statement executes

Function immediately terminates

Control goes back to the caller

When a return statement executes in the function main, the program terminates

> user-defined Functions

double larger (double x, double y) double larger (double x, double y)

{ {

return x;
if (x >= y)

max = X; return y;
else

max = y;
Formal

}

You can also write this function as follows:

doubl
double larger (double x, double y)) "‘i’\ Formal parameters ltst
{ if (x = y) o Localvariadie
if (x >= y) BAX - X}

return x; else
else max -« ¥; Function redumn vabe

return y; return max;

> user-defined Functions

//Program: Largest of three numbers

double larger (double x, double y)

#include <iostream> {
1f (x >=y)
using namespace std; return x;
else
double larger (double x, double y); return y;
}
int maini) double compareThree (double x, double y, double z):
{ :
<< larger (5, 10) << endl; //Line 2 }

return 0; Sample Run: In this sample run, the user input is shaded.

}
double larger (double x, double y) Line 2: The larger of 5 and 10 is 10
{ Line 3: Enter two numbers: 25 73

if (x >= y)
return x; Line 6: The larger of 25 and 73 is 73

else Line 7: The largest of 23, 34, and 12 1s 34
return y;

> user-defined Functions

#include <iostream>

using namespace std;

// Function definition

void welcome()

{
cout <<"Enter your first name: ";
string name;

cin >> name;
cout<<"Hey "<< name << "!";

}

int main() .
{ Enter your first name: Sayed

welcome();

return 9, Hey Sayed '

»user-defined Functions

The return type is the type declared before the function name. Note that the
return type does not indicate what specific value will be returned. It only indicates
what type of value will be returned.

#include<iostream>

#include<iostream>
double return_value() int return value()
{ —

{
return 3.2; 3 - 2 return 3.2;

} }

int main() int main()

{ {
std::cout << return_value() << std::endl; std::cout << return_value() << std::endl;
return 9, return 0;

> user-defined Functions

#include<iostream> #include<iostream>
char return_value() int return_value()

{ { -
\ return 'C'; C } return 'C’; 67

int main() int main()

{ {
std::cout << return_value() << std::endl; std::cout << return_value() << std::endl;
return 8; - return ©;

